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CHAPTER 1

Introduction and Motivation

There is a close relationship between symplectic geometry and complex ge-

ometry. This is especially evident in dimension 4 where a number of different

complex and ”algebro-geometric” ideas have been translated to and studied in

the symplectic context. Some notable examples are the symplectic blow-up con-

struction, as well as McDuff’s characterization of rational and ruled symplec-

tic 4-manifolds [McD90], and Donaldson’s introduction of the notions of Lef-

schetz fibrations/pencils [Don99] and divisors [Don96] in the symplectic cate-

gory. Though there are many similarities between the two geometries, where

these similarities end and where the differences begin is still a subject of great

mystery.

In [Thu76], Thurston presented the first example of a closed symplectic man-

ifold that is not Kähler. Before the explication of this example, it was not known

whether there were any significant differences at all. Thurston’s example is 4-

dimensional and was first studied in a separate context by Kodaira [Kod64] who

showed that it admits an integrable almost complex structure and is thus a com-

plex manifold. Because of this, the example has been known in the literature as

the Kodaira-Thurston manifold which we will denote by MKT. In Kodaira’s original

presentation, we have MKT := S1 × Nil3/H where Nil3 is the Heisenberg group
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and H ⊂ Nil3 is a lattice. We will adopt Thurston’s presentation as the product

MKT := S1 ×M3
ϕ where M3

ϕ is the mapping torus of a right handed Dehn twist

ϕ : T2 → T2 which is the 3–manifold defined by the quotient

M3
ϕ := T2 × I/ ∼

where (0, p) ∼ (1, ϕ(p)). The diffeomorphism type of Mϕ is independent of the

curve about which we perform the Dehn twist via an isotopy.

The manifold MKT cannot be Kähler because we have b1(MKT) = 3 [?Thurston:example].

Kähler manifolds possess a natural Hodge structure and their first Betti number

is always even [GH78, Chapter 7].

In [Gom95], Gompf showed that, for even dimensions 2n ≥ 4, any finitely pre-

sented group G can be made the fundamental group of some closed non-Kähler

symplectic 2n-manifold. Gompf’s construction presents an avenue for finding

many non-Kähler examples using obstructions similar to Thurston’s. With all of

this in mind, it is clear that being Kähler imposes restrictions on the underlying

symplectic geometry, at least on the level of fundamental groups and first homol-

ogy.

Similar to the problem of determining which symplectic manifolds are Kähler

is the problem of determining whether a given non-compact symplectic manifold

can be symplectomorphic to a complex affine variety. Here we take the classical

perspective and consider an affine variety to be the mutual vanishing locus of
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some ideal in a complex polynomial ring. In [McL18], McLean constructs an in-

finite family of symplectic Cns, none of which are symplectomorphic to the stan-

dard affine Cn. The construction works in any complex dimension n ≥ 4. All

of McLean’s examples are of course contractible which tells us that naive coho-

mological techniques are unlikely to produce an adequate obstruction to being

affine. In [McL12], via an approach first introduced by Seidel [Sei08], McLean es-

tablished a more sophisticated obstruction relying on the growth rate of symplectic

homology (c.f. [Sei08]). Through use of this obstruction, McLean has been able to

determine, for example, when a cotangent bundle may be symplectomorphic to

an affine variety [McL12, Corollary 1.3].

The growth rate techniques of McLean and Seidel take a view toward a highly

relevant phenomenon common to all affine varieties: if X2n ⊂ CN is a complex

affine variety, we may always projectivize X to obtain a (possibly singular) projec-

tive variety M̃ ⊂ CPN, its projective completion. By construction, the intersection

of the projective completion with an affine chart in CPN is biholomorphic to our

original affine variety X. The set D̃ = M̃− X is a subvariety of M̃ called a compact-

ifying divisor. It may equivalently be written as the intersection D̃ = M̃ ∩ CPN−1
∞

of M̃ with the projective subspace CPN−1
∞ ⊂ CPN lying “at infinity.”

It is a classical result of Hironaka [Hir64a, Hir64b] that the singularities of M̃

can be completely resolved so as to produce a smooth projective variety M. This

resolution process is carried out by blowing up points lying on the compactifying

divisor and can be performed in such a way that the resulting manifold M still
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contains a biholomorphic copy of X. The complement D := M − X is a subvariety

with particularly nice singularities: (simple) normal-crossing singularities. The

main topological conclusion we can draw from this story is summarized by:

Fact: Every affine variety X admits a smooth (projective) compactification M

by a normal crossing divisor.

McLean and Seidel’s techniques essentially determine whether this sort of

compactification is even possible for a given open symplectic manifold X. One

would naively hope that the existence of such a compactification is sufficient for

X to be symplectomorphic to some affine variety. Our results will demonstrate

that this is not the case. Using the results contained in this work, we will con-

struct a non-affine symplectic 4-manifold XKT as the complement of a symplectic

normal crossing divisor in the Kodaira-Thurston example.

Theorem 1.0.1. Let MKT be the Kodaira-Thurston manifold (see [Thu76]). There

exists a concave SNC+ divisor (Section 3.5) denoted by DKT obtained from the image of a

generic section union a fiber of MKT thought of as a T2-bundle. Then XKT = MKT − DKT

is not symplectomorphic to any affine variety.

This example was chosen to have a very particular presentation. We have writ-

ten XKT as the complement (in MKT) of a symplectic manifold DKT with nodal

singularities (henceforth known as an SNC+ divisor). This is the symplectic ver-

sion of the situation above as it is analogous to possessing a pair (M, D) where M

is a smooth projective variety, D ⊂ M is a normal crossing divisor (in the sense of

complex geometry) and X = M − D is a smooth affine variety. We refer (M, D) as
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a (projective) algebraic compactification of the affine variety X by a normal crossing

divisor.

Let (M, D) be an algebraic compactification for a smooth affine variety X of

real dimension 4 (complex dimension 2). All smooth projective varieties are Kähler

and so the Kähler form ω of M gives it the structure of a compact symplectic man-

ifold. We may restrict this symplectic structure to the smooth components of D

and thus we may present D as a symplectic surface configuration (an SNC+ divi-

sor) with X as its compliment in M. When considered from a purely symplectic

perspective (forgetting the algebraic structure entirely) we refer to (M, D) as an

SNC+ divisor compactification of the non-compact symplectic manifold X. Un-

less otherwise specified, we will assume that any pair (M, D) refers to a general

SNC+ divisor compactification (not necessarily an algebraic one). From this point

of view, it follows that (MKT, DKT) is an SNC+ divisor compactification of XKT by

definition. Since every affine variety possesses such a compactification, our the-

orem shows that this presentation, while necessary, is not sufficient to conclude

that X is affine. We will write

M = X ∪∂X ND

where X is a compact symplectic manifold with boundary with the same homo-

topy type as X and ND is a regular neighborhood of D. More specifically, X is

symplectomorphic to a completion of X as a Liouville domain, (c.f. [Eli]). Any
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other SNC+ compactification (M̃, D̃) of X has a similar decomposition

M̃ = X̃ ∪∂X̃ ND̃

and we always have that X and X̃ are symplectic deformation equivalent. This in

particular implies that we have ∂X diffeomorphic to ∂X̃ and so we may assume

that the decomposition of M̃ is of the form

M̃ = X ∪∂X ND̃.

From this perspective, understanding the totality of all such compactifications

is reduced to understanding which divisors D admit a neighborhood ND with

boundary diffeomorphic to ∂X and how the neighborhood ND is glued to X.

Each SNC+ divisor has an associated decorated graph ΓD which encodes topo-

logical information about the divisor. We call ΓD the divisor graph of D. In the case

when X is affine and (M, D) is an algebraic compactification, we are provided

with some additional geometry: the boundary ∂X supports a natural contact struc-

ture ξD. This is not always true for general SNC+ compactifications. Since we are

primarily interested in explicating the difference between algebraic compactifica-

tions and general SNC+ compactifications, we will assume that ∂X always sup-

ports such a contact structure ξD. For our purposes, we will only consider the class

of concave divisors (see Section 3.5). This class of compactifications can be char-

acterized (see Section 3.5) and (∂X, ξD) is always contactomorphic to (∂X, ξD̃) for
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any two compactifications (M, D) and (M̃, D̃). The main question we are inter-

ested in is:

Question: How much about the isomorphism type of ΓD can we learn from

the contactomorphism type of ∂X?

We can see easily that answering this question makes steps toward under-

standing all SNC+ compactifications of X. Any such compactification (M, D) has

an implicit contactomorphism Ψ : (∂X, ξD) → (∂ND, ξD) which defines the glu-

ing between X and ND. If we were able to discern information about ΓD purely

from this gluing map, we may be able to restrict the class of SNC+ divisors D that

may compactify X. In other words, we would understand something about the

structure of the collection of all compactifications of X.

If one neglects symplectic, contact, and algebraic structures entirely and fo-

cuses only on the topological aspects of the above discussion, this perspective

is well understood. The 3-manifolds YD := ∂ND, henceforth known as divisor

boundaries, are examples of 3-manifold plumbings which are classical objects in low

dimensional topology. The graphs ΓD are examples of plumbing graphs which

give a combinatorial description of how to perform a 3-manifold plumbing and

construct YD topologically. In our discussion, we shall use “divisor graphs” and

“plumbing graphs” essentially interchangeably with a preference toward “divisor

graph.” We will distinguish the two wherever necessary.

In [Neu81], it was shown that divisor graphs can be “reduced” to simpler di-

visor graphs via a well-defind procedure without changing the diffeomorphism
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type of its associated divisor boundary. This reduction procedure always ter-

minates and we are left with a graph ΓTop
D which we will call the topological re-

duction of ΓD. Neumann proved that, for most 3-manifold plumbings, the dif-

feomorphism type of the plumbing characterizes the isomorphism type of ΓTop
D .

Rephrased in terms of divisor boundaries, this theorem reads:

Theorem 1.0.2 ([Neu81], Theorem 4.2). Let YD and YD̃ divisor boundaries with

divisor graphs ΓD and ΓD̃. Then YD and YD̃ are diffeomorphic if and only if ΓTop
D ≈ ΓTop

D̃
.

Throughout, we shall refer to this result as “Neumann’s theorem.” While this

result does answer the question topologically, it is less useful for our purposes

since Neumann’s reduction procedure has no regard (and actually may destroy)

the contact topology at hand. To deal with this, we develop a new reduction pro-

cedure which terminates and produces a (possibly distinct) graph Γξ
D, the contact

reduction of ΓD. In the case when the divisor boundary associated to ΓD is a prime

3-manifold (c.f. [Hat], Chapter 1), by comparing Γξ
D and ΓTop

D , we can arrive at

some topological conclusions:

Theorem 1.0.3. Let (M, D) be a concave SNC+ divisor compactification of X. Let

(∂∞X, ξ) denote the ideal contact boundary of X (Section 2.3). Then if YD is prime and

Γξ
D ̸≈ ΓTop

D , we have one or more of the following:

(i) M is a blow-up of a ruled symplectic manifold,

(ii) the contact 3-manifold (∂∞X, ξ) is Seifert-fibered over RP2 via a fibration with

at most one singular fiber, or
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(iii) the contact 3-manifold (∂∞X, ξ) contains an embedded incompressible Klein bot-

tle.

These conclusions are essentially implied from our main structural theorem

for divisor neighborhoods.

Theorem 1.0.4. Let ND be a concave divisor neighborhood (Chapter 3). Then if ∂ND

is a prime 3-manifold and Γξ
D ̸≈ ΓTop

D , one or more of the following are true:

(i) We may blow up ND to a concave SNC+ divisor neighborhood ND̃ which con-

tains a smooth component S diffeomorphic to a sphere with S · S = 0,

(ii) (∂ND, ξD) is Seifert-fibered over RP2 via a fibration with at most one singular

fiber, or

(iii) (∂ND, ξD) contains an embedded incompressible Klein bottle.

This structural theorem, in turn, is implied by our main results for divisor

boundaries (which are implicit in this result if one restricts to statements only

about ∂ND). The details of this will be discussed in Chapter 6.

Definition 1.0.5. We say a divisor boundary (YD, ξD) is obstructed if Γξ ̸≈ ΓTop and

unobstructed otherwise.

In the unobstructed case, the following result follows directly from [Neu81].

Theorem 1.0.6. Let (YD, ξD) and (YD̃, ξD̃) be a pair of unobstructed divisor bound-

aries with divisor graphs ΓD and ΓD̃. Suppose that (YD, ξD) and (YD̃, ξD̃) are contacto-

morphic. Then Γξ
D ≈ Γξ

D̃
.
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Thus Theorem 1.0.4 and Theorem 6.2.3 give a complete topological charac-

terization of the extent to which Neumann’s theorem fails to hold in the contact

category. The proof of Theorem 1.0.1 essentially follows from a corollary of Theo-

rem 6.2.3. In terms of divisor neighborhoods, we have:

Theorem 1.0.7. Let (ND, ω) and (ND̃, ω̃) denote concave divisor neighborhoods

(Chapter 3) and suppose that (∂ND, ξD) and (∂ND̃, ξD̃) are their associated divisor bound-

aries. Suppose that both D and D are unobstructed. Then if (∂ND, ξD) is contactomor-

phic to (∂ND̃, ξD̃), the symplectic manifolds (ND, ω) and (ND̃, ω̃) are diffeomorphic up

to blow-ups and blow-downs.

The majority of the work in verifying that XKT is not affine is reduced to ver-

ifying that the divisor boundary associated to (MKT, DKT) is unobstructed in the

above sense. From there we can use Theorem 1.0.4 to understand all concave

SNC+ divisor compactifications of XKT which will allow us to conclude Theo-

rem 1.0.1. The details of this will be handled in the latter part of Chapter 6.

There is also a subtlety involving mapping classes of gluings that is also dealt

with. The most general version of our results in the context of symplectic 4-

manifolds may be summarized as:

Theorem 1.0.8. Let D be a concave compactifying SNC+ divisor for a 4-dimensional

Liouville domain (X4, ω) and let (M4, ω) be a compactification of X by D with associated

mapping class [Ψ] ∈ π0(Cont(∂X)) defining the capping. If D is obstructed and ∂X is a

prime 3-manifold, then at least one of the following are true:
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(i) (M, ω) is a blow-up of a ruled symplectic manifold,

(ii) ∂X is Seifert-fibered over RP2 via a fibration with at most one singular fiber,

(iii) ∂X contains a virtually essential Klein bottle.

Otherwise, if D is unobstructed, any other SNC+ divisor compactification (M̃, ω̃) with

the same mapping class [Ψ] is diffeomorphic to (M, ω) up to blow-ups and blow-downs.

The outline of the paper is as follows: We will start with some necessary pre-

liminaries relevant to our three geometries: symplectic, contact, and complex alge-

braic (Chapter 2). We will then outline the topological and some of the symplec-

tic/contact geometric theory of symplectic normal crossing (or SNC+) divisors

(Chapter 3). We then turn to the classical theory of plumbings and graph mani-

folds which make up the main theoretical context for proving our result (Chap-

ter 4). We will outline a framework and process for normalizing divisor graphs

while preserving the contact structure on the divisor boundary (Chapter 5). After

showing that we can almost normalize any divisor graph, we will collect all the

topological ramifications into the main results of the paper (Chapter 6). We will

then focus our attention to the particular case (MKT, DKT) above. We will use The-

orem 1.0.3 to draw conclusions about XKT and DKT that will allow us to conclude

with Theorem 1.0.1. A short discussion on birational symplectic geometry will

follow.
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CHAPTER 2

Preliminaries

This section collects short definitions and descriptions of the geometric objects

relevant to the sections that follow. Everything will be phrased in low dimen-

sions as we will only focus on 4-dimensional varieties and symplectic manifolds

with 3-dimensional contact-type boundaries. As a result, the divisors we concern

ourselves with are all symplectic surface configurations.

2.1. Symplectic Geometry

We are primarily motivated by the geometry and topology of symplectic 4-

manifolds. A 4-manifold M4 is symplectic if it admits a 2-form ω ∈ Ω2
dR(M) such

that

• dω = 0

• for every p ∈ M and 0 ̸= v ∈ TpM, there exists w ∈ TpM such that

ω(v, w) ̸= 0.

These properties respectively mean that ω is closed and non-degenerate. Sym-

plectic manifolds often have topological properties as if they were simply smooth

manifolds but also can express a great deal of rigidity. Because of the first con-

dition above, the gluing of two symplectic manifolds along a common boundary
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may not be symplectic since one would have to additionally show that the sym-

plectic forms can be completed to a closed form on the gluing.

2.2. Contact Geometry

A contact structure on a 3-manifold Y3 is a 2-plane distribution ξ ⊂ TY which

is locally given by the kernel of a 1-form α ∈ Ω1
dR(Y) such that

α ∧ dα ̸= 0(2.2.1)

The condition (2.2.1) is equivalent to saying that dα|ξ is a symplectic form. There

is a unique vector field R satisfying

• α(R) = 1

• iRdα = 0.

This vector field is called the Reeb vector field associated to α and it spans a 1-

dimensional distribution isomorphic to TY/ξ. This distribution and ξ are ori-

ented, respectively, by R and the symplectic form dα|ξ . These orientations com-

bine to give a local orientation wherever α is defined. It follows straight from the

definition that α ∧ dα ̸= 0 is a compatible local volume form. A contact manifold

(Y, ξ) is co-orientable if we can extend these local orientations to a global orienta-

tion of Y. If Y is already oriented, we then say that ξ is positive if the local volume

forms α ∧ dα are positively oriented and we say it is negative otherwise.
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2.3. Liouville domains and manifolds

A Liouville domain is an exact symplectic manifold with boundary (N, dλ) with

λ ∈ Ω1
dR(N). Via the isomorphism between 1-forms and vector fields on N in-

duced by the symplectic form dλ, there exists a unique vector field Vλ such that

dλ(Vλ, W) = λ(W) for any vector field W. The vector field Vλ is called the Liouville

vector field associated to the primitive λ. In most definitions found in the literature,

Vλ is required to be transverse to ∂N. The domain (N, dλ) is called concave if Vλ

points inward along ∂N and convex if it points outward.

The Liouville vector field induces a contact structure ξ on the boundary Y :=

∂N. Since Vλ is transverse to the boundary and λ(Vλ) = 0, α := λ|Y must be a

non-vanishing 1-form. This follows from the fact that λ(W) = dλ(Vλ, W) and the

fact that dλ is a symplectic form. Additionally,

iVλ
(dλ ∧ dλ) = 2λ ∧ dλ ̸= 0

so α∧ dα is a volume form on Y. This implies that ξ := ker(α) is a contact structure.

The contactomorphism type of (Y, ξ) is independent of choice of primitive λ with

outward/inward pointing Liouville field.

We can complete a Liouville domain (N, dλ) to a non-compact exact symplec-

tic manifold without boundary (X, dλ) by attaching a cylindrical end modeled off

of the symplectization of (Y, ξ = ker(α)). Recall that the (positive/negative) sym-

plectization of the contact manifold (Y, ξ) with respect to the contact form α is the
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manifold

Symp±(Y, ξ) := Y × R

endowed with the symplectic form ω := d(e±tα). Let End±(N, ω) := Y × R≥0

and define

X := N ∪Ψ End±(N, dλ)

by gluing either End−(N, dλ) or End+(N, dλ) to N along a symplectomorphism

of Ψ of collar neighborhoods that sends Vλ to the vector field ± ∂
∂t . If N is convex,

we choose End+(N, dλ) and if N is concave, we choose End−(N, dλ). The result

is called the completion of the Liouville domain (N, dλ).

A Liouville manifold is an exact symplectic manifold (X, dλ) which is symplec-

tomorphic to the completion of a Liouville domain. Given such a manifold, we

have an associated contact manifold (Y, ξ) as above. This contact manifold is

called the ideal contact boundary or the boundary at infinity of (X, dλ) and is typically

denoted (∂∞X, ξ) to emphasize its connection to (X, dλ).

2.4. Divisors in algebraic geometry

We assume the reader has some familiarity with classical algebraic geometry.

We are primarily interested in the symplectic geometry of classical affine varieties.

As an example, we consider an affine hypersurface: let I ⊂ C[x, y, z] be a polyno-

mial ideal and let X := V(I) ⊂ C3. Here we define:

V(J) := {p ∈ C3 : h(p) = 0, h ∈ J}
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The variety X being an affine hypersurface simply means that I is generated by a

single polynomial

I := ⟨ f ⟩.

We are often interested in studying the divisors of an algebraic variety (affine or

otherwise). For our purposes, we will take the following definition:

Definition 2.4.1. Let M be an algebraic variety. A divisor is a (complex) co-dimension

one sub-variety of M.

Remark 2.4.2. For algebraic surfaces (ambient complex dimension 2), co-dimension

one sub-varieties correspond to algebraic curves i.e. real 2-dimensional surfaces.

Every affine variety X admits a projective completion, a projective variety M̃

containing a biholomorphic copy of X. For an affine hypersurface, the completion

is obtained as the vanishing locus of the homegenization of the defining polynomial.

For our example above, this is a homogeneous polynomial F : C4 → C given by

F(x, y, z, w) = wdeg( f ) f
( x

w
,

y
w

,
z
w

)
.

This polynomial defines a well defined projective variety as a subset of CP3, com-

plex projective 3-space, given in homogeneous coordinates by

V(F) = {[x : y : z : w] ∈ CP3 : F(x, y, z, w) = 0}.
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The subspace M̃ ∩ {w = 1} ⊂ CP3 is biholomorphic to X. The space D :=

M̃ ∩ {w = 0} is an algebraic subvariety of M̃ and we have that M − D is also

biholomorphic to X. We call D the divisor at infinity or the compactifying divisor

for X. As mentioned above, via Hironaka’s results [Hir64a, Hir64b], we may al-

ways assume that we are working with a smooth projective completion whose

compactifying divisor has at worst nodal singularities which we will now define.

The standard nodal singularity is the algebraic variety XNode := V(xy). The

variety XNode decomposes into two components

XL = {y = 0}

XR := {x = 0}.

An algebraic curve C is nodal if its singular set consists of points locally modeled

after XNode. If C ⊂ X is a divisor, then C is said to be a normal crossing divisor. Here

”normal crossing” refers to the fact that the two components of XNode intersect

orthogonally at the singular point.
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CHAPTER 3

Symplectic divisors with normal crossings

Our goal is to reason with the symplectic and contact geometry associated with

certain singular symplectic submanifolds, symplectic normal crossing divisors. In

this section, we will outline the topological and geometric setting relevant to our

results.

3.1. ω-orthogonal divisors and regular neighborhoods

Let (M4, ω) be a symplectic 4-manifold. An embedded closed symplectic sur-

face Σ2 ⊂ M4 is called a symplectic divisor. We want to understand configurations

of symplectic divisors that have particularly nice intersection properties:

Two symplectic divisors ΣL, ΣR ⊂ M are said to intersect ω-orthogonally if, at

every point p ∈ ΣL ∩ ΣR, we have that

ωp(v, w) = 0

for all v ∈ TpΣL, w ∈ TpΣR. This condition ensures that their tangent spaces span

linearly independent symplectic subspaces of TpM. The intersection is “positive”

in the sense that bases that are positively oriented with respect to TpΣL and TpΣR

combine to form a positively oriented basis for TpM.
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Our primary concern is with the local geometry of M near such divisors. There

are three different aspects to understanding the local theory:

• topology

• symplectic geometry

• contact geometry

We will handle each of these contexts separately and then describe the full per-

spective.

3.2. The Topological Context

We will start with the topology. We consider the situation of two divisors in-

tersecting transversely and ω-orthogonally at a single point p ∈ ΣL ∩ ΣR. To get

started, we must have a clear topological description of “regular” tubular neigh-

borhoods of D := ΣL ∪ ΣR.

We start at the intersection point p ∈ ΣL ∩ ΣR. Fix a neighborhood O p(p) of

p diffeomorphic to C2 whose intersection with ΣL is diffeomorphic to the coordi-

nate plane C × {0} and whose intersection with ΣR is the other coordinate plane

{0} × C. This may always be done since ΣL and ΣR intersect transversely. We let

UL, UR ⊂ O p(p) denote regular neighborhoods (thickenings of constant radius)

of the coordinate planes. The situation is given schematically by the following

figure:
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Figure 3.1. Portions of ΣL and ΣR in a neighborhood of the intersec-
tion

Via the tubular neighborhood theorem, we may choose UL and UR such that

they may be identified with neighborhoods of portions of the zero sections of the

normal bundles ν(ΣL) and ν(ΣR). By extending these portions to full tubular

neighborhoods of the zero sections, we may extend UL and UR to full tubular

neighborhoods

EL ⊂ ν(ΣL),

ER ⊂ ν(ΣR).

We choose these neighborhoods such that EL ∩ ER = UL ∩ UR. We refer to the

union

ND := EL ∪ ER
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as a regular neighborhood of D.

3.2.1. Regular neighborhoods as plumbings

By definition, EL and ER are diffeomorphic to the total spaces of a pair of D2-

subbundles of the normal bundles ν(ΣL), ν(ΣR). Thought of this way, the individ-

ual bundles have associated Euler numbers

kL :=
1

2π

∫
ΣL

e(EL)

kR :=
1

2π

∫
ΣR

e(ER)

where e(EL) ∈ H2
dR(ΣL) and e(ER) ∈ H2

dR(ΣL) are the Euler classes of the D2-

bundles EL, ER (c.f. [BT82], Chapter 6). Since EL, ER are normal disk-bundles of

full rank, we know that these numbers are equal to the self-intersection numbers

of our two divisors:

kL = [ΣL] · [ΣL]

kR = [ΣR] · [ΣR]

(c.f. [Gom95], Chapter 4, Example 4.6.5).

The restrictions EL|UL∩UR and ER|UL∩UR are D2-subbundles which lie over disks

∆L ⊂ ΣL and ∆R ⊂ ΣR and so we may trivialize these restrictions. Our C2-

neighborhood provides diffeomorphisms

EL|UL∩UR ≈ ∆L × D2 ≈ D2 × D2,
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ER|UL∩UR ≈ ∆R × D2 ≈ D2 × D2.

These restrictions are easily seen to be identified in the union along a map D2 ×

D2 → D2 × D2 which switches the two factors (c.f. [GS99], Chapter 4, Example

4.6.2).

This description presents a regular neighborhood topologically as a gluing of

two disk bundles over our initial surfaces. The abstract construction associated to

this situation is called plumbing: Given two disk bundles EL → ΣL and ER → ΣR,

we start by fixing trivializations over portions ∆L ⊂ ΣL and ∆R ⊂ ΣR diffeomor-

phic to disks. These trivializations give us a pair of poly-disks

EL|∆L ≈ D2 × D2

ER|∆R ≈ D2 × D2

and the bundles are “plumbed” together by gluing these poly-disks together along

the map D2 × D2 → D2 × D2 which switches the two factors. The diffeomor-

phism type of a plumbing is independent of our choice of local trivializations.

From this description, it is clear that regular neighborhoods are disk bundle plumb-

ings.
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3.2.2. Plumbing boundaries and plumbing surgery

The boundary of a regular neighborhood may be seen as the result of a surgery

operation on a pair of S1-bundles or, equivalently, a gluing operation between

S1-bundles over surfaces with S1-boundary components.

Continuing with the abstract presentation above, the data we have fixed is a

pair of D2-subbundles

D2 EL|UR∩UR

∆L

D2 EL|UR∩UR

∆R

over portions of ΣL, ΣR diffeomorphic to disks. We let

Σ∗
L := ΣL − ∆L

Σ∗
R := ΣR − ∆R

these are compact surfaces with S1-boundary. Each of the restricted bundles EL|Σ∗
L
,ER|Σ∗

R
,EL|∆L

and ER|∆R is a smooth manifold with corners. We easily see, however, that the sets

NL := EL|∂Σ∗
L
= EL|∂∆L

and

NR := ER|∂Σ∗
R
= ER|∂∆R
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are solid tori which lie in portions of the boundaries of these restrictions. From

the schematic for our C2-neighborhood, we see that the interiors of these solid

tori both lie in the interior of the regular neighborhood ND.

The corner locus of each of these restrictions are tori and may be identified with

one of the boundary tori of NL and NR. In the full regular neighborhood, these

tori are all identified and lie in the boundary of the neighborhood. We denote the

identified torus by T and refer to it as a plumbing torus lying in the boundary of

our regular neighborhood.

Cutting ∂ND along T splits the boundary into two pieces. By construction,

these pieces may be identified by portions of the boundary S1-bundles ∂EL|Σ∗
L

and

∂EL|Σ∗
R

lying over the interiors of Σ∗
L and Σ∗

R. By taking the closure of these pieces,

we obtain two S1-bundles AL ⊂ ∂UL and AR ⊂ ∂UR over the surfaces Σ∗
L,Σ∗

R:

S1 AL

Σ∗
L

S1 AR

Σ∗
R

In the full boundary ∂ND, these pieces intersect along the plumbing torus T. This

description presents the boundary of the entire regular neighborhood as a gluing

of AL and AR along a diffeomorphism of their torus boundaries

∂AL → ∂AR.

We can understand this gluing as follows:
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(i) Using the coordinates provided by the neighborhood of the intersection,

we let FL := ∂D2 × {pt} and FR := {pt} × ∂D2. This provides our corner

locus T := ∂D2 × ∂D2 with an oriented basis on homology

H1(T) = Z⟨[FL], [FR]⟩.

(ii) Fixing a pair of sections σL : Σ∗
L → AL and σR : Σ∗

R → AR defines for us

bases for the homology of our boundary tori

H1(∂AL) = Z⟨[σL|∂AL ], [FL]⟩

and

H1(∂AR) = Z⟨[σR|∂AR ], [FR]⟩.

(iii) With all these bases, we have gluing maps ψL : ∂AL → T and ψR : ∂AR →

T. In matrix notation, these maps act on homology via

(ψL)∗ =

−kL 1

−1 0


and

(ψR)∗ =

 −1 0

−kR 1

 .
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Here kL and kR are the Euler numbers of the respective bundles ∂EL and

∂ER since we must have

∂EL = AL ∪ψL NR

∂ER = AR ∪ψR NL

The gluing map is identified with ψ = ψ−1
R ◦ ψL : ∂AL → ∂AR. The

induced map on homology is then given in matrix notation by

ψ∗ =

 −1 0

−kR 1


−kL 1

−1 0

 =

 kL −1

kLkR − 1 kR


so this map sends a meridian of AL to a curve of slope kR − 1

kL
.

The abstract construction associated to this story is called plumbing surgery.

Given our two D2-bundles

EL → ΣL

ER → ΣL

as above we consider the S1-bundles

∂EL → ΣL

∂ER → ΣR
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Plumbing surgery is performed by removing the interiors of trivializing solid tori

from each and then gluing the remaining pieces together along their boundary.

As above, we require that, with respect to some set of coordinates, the gluing map

sends a meridian of one torus boundary to a curve of slope kR − 1
kL

in the other.

Equivalently, we could have started with a pair of trivial S1-bundles with

boundary

Σ∗
L × S1 → Σ∗

L

Σ∗
R × S1 → Σ∗

R

together with a pair of integers (kL, kR) and glue them together as above. In this

situation, the integers kL and kR referred to as Waldhausen framings of the respec-

tive pieces.

3.3. SNC+ Divisors

Extending the notion of ω-orthogonality beyond two intersecting divisors is

straightforward. Throughout, we will consider configurations of multiple mutu-

ally ω-orthogonal symplectic divisors. In continuing the analogy between sym-

plectic geometry and algebraic geometry, we have:

Definition 3.3.1. A subspace D ⊂ (M4, ω) is called a (simple) symplectic divisor

with positive normal crossings (or simply an SNC+-divisor) if we may write

D =
N⋃

i=1

Di
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where {Di}N
i=1 is a collection of embedded closed symplectic surfaces in M such

that any pair (Di, Dj) with Di ∩ Dj ̸= ∅ intersects ω-orthogonally only in trans-

verse double points (i.e. all intersections must be modeled after intersecting co-

ordinate planes in C2). The manifolds Di are called the smooth components of the

divisor D.

It is also straightforward to generalize the notion of a regular neighborhood of

a pair of normal crossing divisors to general SNC+ divisors. We may then read-

ily see a regular neighborhood as the result of plumbing multiple disk bundles

together.

To each SNC+ divisor D, we may construct a finite graph ΓD encoding the

connectivity information of D as follows:

• The vertex set of ΓD consists of one vertex vi for every component Di.

• Two distinct vertices vi, vj are connected by an edge ek
ij for each pk ∈ Di ∩

Dj ̸= ∅.

It is important to note that, with this definition, there are no edges in ΓD from a

vertex to itself (i.e. ΓD is free of loops). Thus SNC+ divisors, as defined above, are

topologically identical to simple normal crossing divisors in the complex-algebro-

geometric setting, justifying their name.
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Remark 3.3.2. For notational convenience, we will re-label the components of D

by the corresponding vertices of ΓD. Any vertex v ∈ ΓD corresponds to a compo-

nent Dv ⊂ D. We let E(v) denote the set of edges in ΓD adjacent to v and we let

N (v) be the set of vertices neighboring v.

3.4. Divisor boundaries

The boundary of a regular neighborhood of an SNC+ divisor is called a divi-

sor boundary and is denoted by YD := ∂ND where ND is the neighborhood of D

discussed above.

By following a similar procedure as in Section 3.2.2 above, we may describe

the topology of YD abstractly. First, we now obtain a collection TD := {Te}e∈ΓD of

plumbing tori. Cutting YD along these tori splits it into a collection {Av}v∈ΓD of S1

over a collection of surfaces with boundary {Σ∗
v}v∈ΓD , all defined analogously to

Σ∗
L and Σ∗

R in Section 3.2.2. Fixing sections σv : Σ∗
v → Av as before now yields, for

each v, a collection of integers {kvw}w∈N (v) such that

kv = ∑
w∈N (v)

kvw

which describe the gluing maps for the piece Av. This collection is called a Wald-

hausen framing for the vertex. We note that choosing a different section may give

rise to a different Waldhausen framing.

The abstract description thus starts with a collection {Σ∗
v}v∈ΓD of surfaces with

boundary giving rise to a collection of trivial S1-bundles {Σ∗
v × S1}v∈ΓD . Each



35

fixed surface Σ∗
v is given an associated Euler number kv and a collection of integers

{kvw}w∈N (v) such that

kv = ∑
w∈N (v)

kvw

and the bundles are glued together along apropriate diffeomorphisms of their

boundary components as in Section 3.2.2.

3.5. Liouville domains, concavity, and the GS-criterion

In many cases, closed neighborhoods of SNC+ divisors will admit the struc-

ture of a Liouville domain.

Definition 3.5.1. An SNC+ divisor D is said to be concave if every regular neigh-

borhood ND admits a closed sub-neighborhood ND such that (ND, ω|ND) is a con-

cave Liouville domain.

The Liouville vector field induces a contact structure ξ on the boundary YD :=

∂ND. The contactomorphism type of (YD, ξ) is independent of choice of primitive

λ with inward pointing Liouville field inducing the contact structure.

There is a simple condition that determines when N admits a concave Liouville

structure. Every SNC+ divisor, concave or otherwise, has an associated intersec-

tion form QD : ΓD × ΓD → Z defined by

QD(v, w) = Dv · Dw
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From this definition, QD(v, w) = d if ΓD has d ≥ 0 edges from v to w and QD(v, v)

is the self-intersection number (in M) of Dv. Placing an arbitrary order on the

vertices v1, . . . , vN, we regard the intersection form as a linear map QD : RN → RN

defined, as a matrix, by the entries

(QD)ij = QD(vi, vj).

We also have a well defined area vector a ∈ RN with entries

avi =
∫

Dvi

ω.

Definition 3.5.2. We say that D satisfies the positive GS-criterion if there exists a

vector b ∈ RN with positive entries solving

QDb = a.

We then have:

Theorem 3.5.3 ([LM19], Theorem 1.1). If D satisfies the positive GS-criterion,

then D has a concave neighborhood ND inside any regular neighborhood U via the GS-

construction ([LM], Section 2.1). The contactomorphism type of the boundary of ND is

independent of all choices made during the GS-construction.

Remark 3.5.4. “GS” refers to the authors of [GS09] wherein a separate condition

involving negative solutions is shown to be sufficient to ensure the existence of a

convex neighborhood.
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Keeping track of the full symplectic topological data of concave neighbor-

hoods requires decorations on the graph ΓD in the form of:

• Functions (g, k) : Vert(ΓD) → N≥0 × Z where g(v) is the genus and k(v)

is the self intersection number of the divisor Dv and Vert(ΓD) is the set of

vertices of ΓD.

• The symplectic area vector a.

For the remainder of our discussion, all divisors will assumed to be concave and

so we will assume that their (decorated) graphs satisfy the positive GS-criterion.
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CHAPTER 4

Divisor Boundaries, Graph Manifolds, and Topological

Plumbing Calculus

The fact that closed regular neighborhoods of concave divisors admit contact

type boundaries means that to every such divisor D, we may associate a contact

3-manifold (YD, ξD). The contactomorphism type of (YD, ξD) is stable up to per-

turbation of the non-vanishing Liouville vector field. Any such 3-manifold YD

is called a divisor boundary and the contact manifold (YD, ξD) is called a contact

divisor boundary. As previously mentioned, divisor boundaries are examples of

3-manifold plumbings. These objects are classical to topology and have received

extensive attention and use.

The diffeomorphism type of YD is completely determined by the divisor D.

This follows from classical results in smooth topology. We are interested in under-

standing to what extent the diffeomorphism type of YD determines the contacto-

morphism type of (YD, ξD).
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4.1. The canonical contact structure of a plumbing

Let Γ be an arbitrary plumbing graph with standard genus and self-intersection

number decorations (g, k). As before, we let g(v), k(v), and d(v) respectively de-

note the genus, self-intersection number, and degree of a vertex v. For now, we

assume that Γ has more than one vertex.

For each vertex v, we let Σ∗
v be a genus g(v) surface with d(v) boundary com-

ponents. We fix a labeling of the boundary components of Σ∗
v by the neighboring

nodes of v in Γ. We let Cw denote the boundary component corresponding to

w ∈ N (v). We let Yv := Σ∗
v × S1 and let [Fv] ∈ H2(Yv) denote the homology class

of Fv := pt × S1 in Yv.

Choose a collection of closed curves γv,w ⊂ Cw × S1 ⊂ Yv such that [γv,w] ·

[Cw × pt] = 1 and such that the collection of integers kw := [γv,w] · [Fv] satisfies

k(v) = ∑
w∈N (v)

kw.

Finally, we let Sv ⊂ Yv denote a section of the trivial fibration Yv such that ∂wSv =

γv,w.

Topologically, the plumbing boundary YΓ may be constructed by gluing these

pieces together. For any fixed vertex v, we glue Yv to Yw for w ∈ N (v) along the

map which takes γv,w 7→ Fw and Fv 7→ γw,v

For any volume form Ω on Sv, we may always find a Liouville 1-form λ whose

Liouville vector field with respect to Ω points outward along ∂Sv
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4.2. Determining ΓD from YD

The diffeomorphism type of a divisor boundary (or even a more general plumb-

ing) does not determine the isomorphism type of the divisor graph ΓD. Perform-

ing a symplectic blow-up on (ND, dλ) at some point p ∈ D away from the singu-

lar points will produce a new symplectic 4-manifold (ND̃, ω̃) which is a regular

neighborhood of a divisor D̃ which reduces to D after blowing-down the excep-

tional divisor. Blowing up is a local construction and does not affect the diffeo-

morphism type of the boundary ∂ND̃. We thus have:

Proposition 4.2.1. If YD and YD̃ are divisor boundaries, then we may have YD ≈Diff YD̃

with ΓD ̸≈ ΓD̃.

We conclude that we cannot possibly recover ΓD from the divisor boundary

alone unless we somehow deal with situations like the above.

4.3. Topological Plumbing Calculus

Looking at Proposition 4.2.1, we see that the diffeomorphism type of a divisor

boundary is not enough to recover the isomorphism type of its associated divisor

graph. There is however, still a great deal of rigidity in the relationship between

divisor boundaries and their plumbing graphs.

In [Neu81], the author defined a collection of eight moves which may be per-

formed on plumbing graphs Γ (see [Neu81], Section 2). Each of these moves have

associated topological constructions which transform NΓ into another plumbing

NΓ̃ while preserving the diffeomorphism type of the boundary.
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There are only two moves which are relevant to this manuscript. They are

named and defined diagrammatically by:

(1) The ±1 blow-down: Defined by

. . .
(g1, k1 ± 1) ±1

(g2, k2 ± 1)

. . . · · ·
(g1, k1)

(g2, k2)

· · ·

or

. . .
(g, k ± 1) ±1

· · ·
(g, k)

.

and (2) RP2-absorption: Defined by

. . .
(g, k) δ

2δ1

2δ2

· · ·
(g # − 1, k)

.

Here δi = ±1, δ = δ1+δ2
2 , and the vertex with decoration (g #− 1, k) denotes the S1

bundle over Σg#RP2 with Euler number k.

The other moves are (by name only):

(3) 0-curve absorption: This move obviously implies that the graph contains

a sphere of self intersection number zero. These graphs will be discussed

in the contact setting below.
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(4) Unoriented handle absorption: This move is not applicable to SNC+ di-

visors as it involves reducing to a graph with a non-orientable vertex.

(5) Oriented handle absorption: This move is equivalent to having a sphere

of self-intersection number zero. This situation is dealt with in the contact

setting below.

(6) Splitting: All of our divisor graphs will be connected and do not admit

any splittings.

(7) Seifert graph exchanges: This performs a number of graph exchanges be-

tween components with one vertex and one loop and the standard star-

shaped presentations of the Seifert-fibered spaces they represent. Because

none of our graphs contain any loops (i.e. edges from a vertex to itself),

these exchanges will never be applicable.

(8) Annulus absorption: This move is performed on general plumbings with

boundary. Since none of our divisor boundaries have boundaries of their

own, this move does not apply.

Definition 4.3.1. Two plumbing graphs Γ1, Γ2 are said to be TPC-combinatorially

related1 if we can obtain one from the other via a sequence of moves in Neumann’s

plumbing calculus (see [Neu81], Section 2).

Which brings us to one of the main results of Neumann’s paper:

1TPC = Topological Plumbing Calculus
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Theorem 4.3.2 ([Neu81], Theorem 3.1). If YΓ is diffeomorphic to YΓ̃, then Γ and Γ̃

are TPC-combinatorially related.

From this, we may conclude that the diffeomorphism type of a divisor bound-

ary determines the isomorphism type of its plumbing graph up to topological

plumbing calculus. To prove this theorem, Neumann defines what it means for a

plumbing graph to be in normal form and first shows that every plumbing graph

may be put into normal form via topological plumbing calculus. Neumann then

shows that the diffeomorphism type of plumbing boundaries whose graphs are in

normal form do determine the isomorphism type of its associated graph. In order

to write the definition of Neumann’s normal form, it helps to discuss a special

class of subgraphs relevant to the theorem: chains of spheres.

4.4. Chains of Spheres

A set of plumbing graphs important for our discussion are linear plumbings

of spheres or “chains.”

Definition 4.4.1. Let Γ be a plumbing graph. A chain is a subgraph C ⊂ Γ of the

form
−m1 −m2 −m3

· · ·
−mℓ−1−mℓ

with each vertex having degree at most 2 in Γ. The integers −mi are called the

components of the chain C. A chain is called maximal if it is not contained in a strictly
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larger chain. A chain is normal or in normal form if mi ≥ 2 for i > 1 and m1 is either

0 or ≥ 2.

Remark 4.4.2. Chains are symmetric and so YC is diffeomorphic to YC′ where C′

is the chain with components (−mℓ, . . . ,−m1).

The following lemma is a classical result in 3-manifold topology. There are

many proofs of this result in the literature. The proof given in [Sym03] is the very

economical and so we reproduce it here.

Lemma 4.4.3. Let C ⊂ Γ be a chain with components (−m1, . . . ,−mℓ) and mℓ ̸= 0, 1.

Then YC is diffeomorphic to a Lens space L(p, q) where

p
q
= m1 −

1
m2 − 1

. . .− 1
mℓ

.(4.4.4)

PROOF. The topology of the 3-manifold associated to a chain may be written

as a union

D2 × S1 ∪Φ D2 × S1

where Φ : T2 → T2 is a gluing diffeomorphism. We may see this because we may

decompose the boundary associated to a chain of spheres into a union

D2 × S1 ∪T2 I × S1 × S1 ∪T2 · · · ∪T2 I × S1 × S1 ∪T2 D2 × S1

by cutting along all plumbing tori. From here, we see that we may use the fact

that a manifold glued to a copy of I × S1 × S1 ∪T2 D2 × S1 is diffeomorphic to a



45

manifold glued to a copy of D2 × S1 along some other diffeomorphism. Applying

this to the above composition yields our initial decomposition. The map Φ is sim-

ply the composition of all gluing maps involved thought of as diffeomorphisms

of T2.

By using the natural basis on ∂D × S1, this may be thought of as an element

of SL(2, Z) (c.f. [Neu81], Section 5). The matrix AΦ ∈ SL(2, Z) associated to this

gluing is given by the composition

AΦ := A1A2 · · · AL

where

Aℓ =

−1 0

mℓ 1


and

Ai =

−1 0

mi 1


0 1

1 0


for 1 ≤ i < ℓ. We then have

A1 · · · Aℓ =

−q q′

p p′


To compute p and q, it suffices to find the coefficients of the image of the merid-

ian ∂D × {pt}. Under Aℓ, the image is a (−1, mℓ) curve. For the Ai, we see that

the image of a (−x, y) curve under Ai is a (−y,−x + ciy) curve and so a curve of

slope y
x is taken to a curve of slope mi − 1

y/x . The result follows by induction. □
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From now on, we introduce the following notational conventions:

• We let [m1, . . . , mℓ] denote the finite continued fraction with components

(m1, . . . , mℓ) as in the right-hand side of 4.4.4.

• We let C(m1, . . . , mℓ) the chain with components (−m1, . . . ,−mn).

• We let L(m1, . . . , mℓ) denote the lens space L(p, q) with p/q = [m1, . . . , mℓ].

In this notation, Lemma 4.4.3 becomes

YC(m1,...,mℓ)
≈Diff L(m1, . . . , mℓ).

Each positive rational number r has a unique normal chain C(m1, . . . , mℓ) as-

sociated to it where r = [m1, . . . , mℓ]. This follows directly from the fact that con-

tinued fraction expansions of rational numbers are unique if all the components

mi for i > 1 satisfy mi ≥ 2. Thus every normalized chain is homemorphic to a lens

space L(p, q) where p, q are relatively prime and p/q = r.

4.5. TPC normal form

We are now able define Neumann’s normal form.

Definition 4.5.1 ([Neu81], Section 4). We say that a plumbing graph Γ is in TPC

normal form if the following criteria are met:
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1. No operation from topological plumbing calculus may be performed, ex-

cept that Γ may have a component of the form:

a1
· · ·

ak −1

−2

−2
.

2. The weights ei on all chains of Γ satisfy ei ≤ −2.

3. No portion of the graph has the from

· · ·
−1

−2

−2

unless it is in a component of Γ of the form

ak
· · ·

ak −1

−2

−2
.
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4. No component of Γ is isomorphic to:

−2
· · ·

−2 −2

.

In the context of divisor graphs, (4) is a special case of a circular spherical divisor

graph. Such divisors and their graphs were classified in their entirety in [LM] and

are not relevant to this paper.

Neumann’s major results about graphs in normal form result in a proof of

Theorem 4.5.2 ([Neu81], Theorem 3.1). If YD is diffeomorphic to YD̃, then ΓD and

ΓD̃ are TPC-combinatorially related.

It is first proven that:

Lemma 4.5.3 ([Neu81], Theorem 4.1). Any plumbing graph can be reduced to normal

form using topological plumbing calculus.

One then only needs to show:

Theorem 4.5.4 ([Neu81], Theorem 4.2 ). Let Γ, Γ̃ be two plumbing graphs in topo-

logical normal form. Then YΓ is diffeomorphic to YΓ̃ if and only if Γ and Γ̃ are isomorphic.

To prove Lemma 4.5.3, Neumann outlines a procedure for using the topologi-

cal plumbing calculus to normalize a plumbing graph. Crucial to this procedure

is an algorithm for normalizing chains. As we will see in the next section, this
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algorithm cannot be followed directly in the contact setting while preserving the

contactomorphism type of the divisor boundary.
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CHAPTER 5

Contact Plumbing Calculus

We will see that not every move in the topological plumbing calculus respects

the contact topology of the boundary. After determining which moves in the cal-

culus are capable of being carried out in the contact setting, we will augment the

calculus with new moves. These moves indeed are already possible within Neu-

mann’s calculus but nonetheless have their own unique usage which warrants

their own names.

5.1. Contact-Sensitive TPC Moves

Theorem 4.5.2 tells us that if YD and YD̃ are diffeomorphic, then their divi-

sor graphs are TPC-related. Since contactomorphism implies diffeomorphism,

this result clearly also holds with respect to contactomorphism. The issue is that,

while all associated topological constructions in Neumann’s topological plumb-

ing calculus preserve the diffeomorphism type of the divisor boundary, the moves

may change the contactomorphism type of a divisor boundary. An example of a

move that is not contact-preserving is the interior/exterior +1 blow-up/blow-down

([Neu81], Move 1) defined by

. . .
(g1, k1) (g2, k2)

. . . · · ·
(g1, k1 + 1) 1 (g2, k2 + 1)

· · ·
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or

. . .
(g, k)

· · ·
(g, k + 1) 1

.

The following example demonstrating this was first given in [LM19] Example

2.21:
1 2

which is the +1 blow-up of
1

.

The contact 3-manifold associated to the second graph is (S3, ξstd) but the contact

structure associated to the first is overtwisted. Indeed, if the contact structure

associated to the first graph were tight, then it would be contactomorphic to the

standard S3 and, by [Eli92, Theorem 1.4.1], it would admit a filling by the standard

symplectic 4-ball since S3 is universally tight. It follows that we may fill in a

concave neighborhood to a closed symplectic manifold (M, ω). Since M contains

a sphere of self-intersection number 1, by [McD90, Corollary 1.6], we know that it

is a blow-up of CP2. This tells us that the intersection form of M is diffeomorphic

to CP2#kCP
2

and so b+2 (CP2) = 1. From the first graph, we see that we must

have b+2 (M) = 2 and so we cannot have such a filling.

The interior/exterior −1 blow-up/blow-down defined by

. . .
(g1, k1) (g2, k2)

. . . · · ·
(g1, k1 − 1) −1 (g2, k2 − 1)

· · ·
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. . .
(g, k)

· · ·
(g, k − 1) −1

is contact-preserving. This was shown in [LM] using methods from toric geom-

etry. Their construction exploits the toric structure of a neighborhood of the in-

tersection of two smooth divisors. A toric diagram for a portion of a concave

neighborhood can be obtained near the intersection points and the -1 blow-up can

be performed in the toric region by modifying this diagram. One can then glue

in the 4-manifold associated to the modified diagram by cutting out the toric re-

gion in the original neighborhood. This can be done while preserving concavity to

yield a concave neighborhood of the symplectic divisor obtained after performing

the blow-up.

Additionally, many of the moves outlined in topological plumbing calculus

are not-applicable as they involve vertices with non-orientable bases which have

no direct symplectic analog.

Every component of an SNC+ divisor is orientable and so any of the moves

involving non-orientable surfaces ([Neu81], Moves 2 and 4) can be completely

removed from consideration with the exception RP2-absorption:

. . .
(g, k) δ

2δ1

2δ2

· · ·
(g # − 1, k)

.
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Here δi = ±1, δ = δ1+δ2
2 , and the vertex with decoration (g # − 1, k) denotes the

S1 bundle over Σg#RP2 with Euler number k. This move has no clear symplectic

analog but subtlety appears in this story due to the simple fact that the manifold

obtained from

. . .
δ

2δ1

2δ2

by cutting at the plumbing torus corresponding to the leftmost edge is diffeomor-

phic to an orientable tubular neighborhood of a Klein bottle. This subtlety will be

expanded upon in Section 5.5.

Edges from a vertex to itself never appear in SNC+ plumbing graphs by the

simplicity condition (i.e. all the components of D must be smooth manifolds). This

allows us to discard any moves involving loops ([Neu81], Move 7). Since all in-

tersections of SNC+ divisors are positive, edge signs do not appear and so any

moves involving edge signs can be discarded as well ([Neu81], Moves 3,5, and 7).

Finally, all of our contact 3-manifolds are without boundary so we may discard

any moves dealing with graphs with non-empty boundary (Moves 6 and 8). Thus,

the only move from Neumann’s calculus that is applicable and contact-preserving

is the −1 blow-up/blow-down.
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5.2. Contact Plumbing Calculus

The discussion in the previous section tells us that we are disarmed consider-

ably in the contact setting. This makes proving an analog of Lemma 4.5.3 more

difficult since it is unclear whether one can reduce divisor graphs to their normal

form with −1 blow-ups alone.

Fortunately, since many of Neumann’s moves are not-applicable, we merely

have to avoid using the +1 blow-up/blow-down or RP2-absorptions to reduce

to normal form. The proof of Lemma 4.5.3 ([Neu81], Theorem 4.1) crucially uses

+1 blow-downs to normalize chains and so we must find another way to normal-

ize chains in a way that preserves the contact structure of the divisor boundary.

It turns out that −1 blow-ups are enough to get pretty far in the normalization

process and draw some conclusions.

It is convenient to introduce a few additional contact-preserving moves that

we can work with. These moves follow directly from applications of −1 blow-ups

and blow-downs but it is convenient to give them their own names:

Construction 5.2.1 (0-curve transfer). Consider the following situation

· · ·
A 0 B

· · ·
.
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We may blow up either edge connected to the 0-curve. For example, we may blow

up the left edge

· · ·
A − 1 −1 −1 B

· · ·

then blow down the (−1)-curve next to the B-curve to arrive at

· · ·
A − 1 0 B + 1

· · ·
.

Effectively, we have taken from the A-curve and added to the B-curve. This pro-

cess is called 0-curve transfer. It’s clear that a similar process may be used to trans-

fer from the B-curve to the A-curve. This process can be iterated to increase the

transfer between the chains. We will denote transfers with a directed edge

· · ·
A 0 B

· · · · · ·
A − k 0 B + k

· · ·

k .

A special case is the following

· · ·
A 0

in which we may blow up the internal edge

· · ·
A − 1 −1 −1
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and blow down to

· · ·
A − 1 0

or we may blow up the exterior

· · ·
A −1 −1

and blow down to

· · ·
A + 1 0

.

This is referred to as transferring to/from nowhere and will be denoted by

· · ·
A 0

· · ·
A − k 0

+k

· · ·
A 0

· · ·
A + k 0

+k .

Construction 5.2.2 (Sliding). Consider the following situation

· · ·
A 0 0 B

· · ·
.
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We can use the left 0-curve in the 0-0 configuration to transfer all of the A-curve

over. We arrive at

· · ·
0 0 A B

· · ·
.

Thus we have moved the 0-0 configuration to the left. This is called sliding. It’s

clear that we can slide in the other direction as well.

Construction 5.2.3 (Transfer to/from nowhere). We start with

. . .
A 1 B

. . .
.

We blow up once on the left to get

. . .
A − 1 −1 0 B

. . .
.

and once on the right to get

. . .
A − 1 −1 −1 −1 B − 1

. . .
.

We then blow down the middle curve to arrive at

. . .
A − 1 0 0 B − 1

. . .
.
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We refer to this process as chain replacement and we denote it by

· · ·
A 1 B

· · · · · ·
A − 1 0 0 B − 1

· · ·

We will use these moves in order to perform a modified chain reduction pro-

cedure.

5.3. The Modified Chain Reduction Lemma

We may now prove the following key lemma:

Lemma 5.3.1. Let Γ be a concave divisor graph. Then we may perform a finite sequence

of

• combinatorial (−1)-blow-ups and (−1)-blow-downs and

• exchanges as in Section 5.2

on Γ to arrive at a graph Γξ whose maximal chains are all of the form

m −m′
1 −m′

2
· · ·

−m′
ℓ−1−m′

ℓ

Where the m-vertex represents a linear chain of 0-curves of length m ≥ 0 and mi ≥ 2.

Such a chain is said to be in contact normal form. We call Γξ the contact chain reduction

of Γ.

PROOF. Let C ⊂ Γ be a maximal chain. Fix some linear ordering on the com-

ponents of C so that C = C(m1, . . . , mℓ). For exterior maximal chains, we always
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take mℓ to be the decoration on the exterior-most curve. We progress according to

the following procedure:

1. Blow down as many −1-curves as possible from left to right (possibly

in multiple stages). The result should be a maximal chain with no −1-

curves. If the resulting chain is normalized, proceed to the next chain.

2. For each configuration of the form

· · ·
k1 0 k2

· · ·
,

transfer all of k1 over the 0-curve to the right

· · ·
k1 0 k2

· · · · · ·
0 0 k1 + k2

· · ·

+k1 .

Now shift the 0-0 configuration all the way to the left.

3. Repeat steps (1) and (2), until the chain has no (−1)-curves and no 0-

curves except those on the left. Since both steps either preserve or reduce

the number of vertices in the chain, this process will eventually halt.

4. The chain is now of the form:

m
C+
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where the m -vertex is a linear chain 0-curves of length m and C+ is a sub-

chain without −1-curves or 0-curves. Starting from the left, identify the

first k-curve in the chain with k > 0. The chain thus may be decomposed

as
m

C0

k
C+

where C0 is a chain with all decorations ≤ −2 and C+ is the rest of the

chain.

We could have C0 = ∅ and be in the situation:

. . .
0 k

· · ·
.

If the number of zeros on the left is odd, we simply use the chain of 0-

curves to the left to transfer k into the rest of the graph. This increases the

number of 0-curves on the left by one.

If the number of 0-curves on the left is even and non-zero, we may

transfer +2 from the 0-curve left of the k-curve into the graph using the

odd number of 0-curves to its left. This reduces the scenario to the case

C0 ̸= ∅ and decreases the number of 0-curves on the left by one.



61

In all other cases, we blow up the k-curve on the left (k − 1) times so

that it becomes a zero curve, the chain is now of the form:

m
C0

−2 −2
· · ·

−2 −1 1
C+

and this process has added (k − 1) vertices. We then perform a chain re-

placement and replace the +1-curve with a 0-0 configuration which adds

an additional vertex. If C+ ̸= ∅, then this leaves the chain in the form

m
C0

−2 −2
· · ·

−2 −2 0 0 k̃
C+

where we have

k̃ =



≤ −2

−1

0

≥ 1

.

We may slide the 0-0 configuration so that it is of the form

m + 2
C0

−2 −2
· · ·

−2 −2 k̃
C+
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If C+ = ∅, then we proceed to the next chain after sliding. It will be

important to notate the chain of −2’s for the next step. We will represent

our chain by

m+2
C0 (k − 1)

k̃
C+

.

By considering the −2-curves at the tail end of C0, we may further write

m+2
C− N

k̃
C+

where N is a maximal subchain of −2-curves and C− is a subchain with

only negative vertices and no −1-curves.

5. If the algorithm did not terminate at the previous step, then we are in the

following situation:

M
C− N

k̃
C+

We consider all cases for the value of k̃ separately:

• k̃ ≤ −2 or k̃ ≥ 1: For these, we continue to step through the chain or

repeat the process outlined in step 4 if necessary.
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• k̃ = 0: We proceed as in step 2. At the end of this process, the chain

is of the form:

M + 2
C− N − 1 C+

where C+ is the remainder of the chain. If C+ is not empty, then the

situation is like

M+2
C− N − 1

k̂
C+

so we may repeat this step for the new value k̂.

• k̃ = −1 : We are in the situation

M
C− N

−1
C+

.

If C+ ̸= ∅, then we’re actually in the situation

M
C− N

−1 k̂
C+

.

In this case (and even in the case when C+ = ∅) we blow down the

−1-curve. Because of the chain of −2’s to the left of the −1-curve, we
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may continue to blow down until the chain is of the form

M
C−

−1 (k̂ + N)

C+ .

Blowing down the remaining -1 curve will affect the rightmost ver-

tex in the subchain C−. At worst, this vertex is a −3-curve so that

blowing down leave a trailing −2-curve. So, at worst, the situation is

M
C− 1

k̂ + (N + 1)
C+

.

We continue to step through the chain, starting with the k̂ + (N + 1)

curve.

We continue to repeat the present step until the maximal chain is in

contact normal form.

−m′
1 −m′

2 −m′
3

· · ·
−m′

ℓ−1−m′
ℓ

or
m −m′

1 −m′
2

· · ·
−m′

ℓ−1−m′
ℓ

where the m -vertex is a linear chain of m 0-curves and mi ≥ 2.
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We then repeat the entire procedure for all other chains until all chains are in

contact normal form. □

5.4. Contact normal form plumbing graphs

The modified chain reduction lemma shows that we can almost fully normal-

ize a chain in the contact setting using only blow-ups and blow-downs. The only

difference between a fully normalized chain and a chain in contact normal form

is the admissibility of any number of leading 0-curves. This difference, as well as

the issues involving Klein bottle pieces discussed earlier, are the only obstructions

to carrying out Neumann’s reduction procedure in full. We make the following

definition:

Definition 5.4.1. We say that a divisor graph Γ is in contact normal form if it is in

TPC normal form except that:

• Γ may contain configurations of the form

. . .
δ

2δ1

2δ2

where δi = ±1, δ = δ1+δ2
2 .

• A chain C ⊂ Γ may contain any number of leading 0-curves.

With this definition and the discussion in the previous section, we have shown
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Proposition 5.4.2. The contact chain reduction Γξ of a plumbing graph Γ is in contact

normal form.

We refer to Γξ as the contact reduction of the graph Γ.

Corollary 5.4.3. Any plumbing graph Γ can be reduced to a graph Γξ in contact normal

form.

The two distinguising features of a plumbing graph in contact normal form

and a plumbing graph in topological normal form are:

(i) The plumbing graph may have Klein bottle pieces.

(ii) Any chains may contain any number of leading 0-curves.

The first of these conditions has topological implications and the second condition

has symplectic and contact topological implications. In the next section, we will

analyze the topological ramifications of having an embedded Klein bottle in a

divisor boundary. The existence of leading zero chains is closely related to the

concept of Giroux torsion from contact geometry. We hope to explicate the details

of this in later work. For our applications, it suffices for us to understand the

second condition in the context of our particular example (see Section 6.2). We

start with the first condition.
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5.5. Klein bottle pieces

We turn to the case of plumbing graphs which contain sub-graphs of the form

. . .
e

2δ1

2δ2

with δi = ±1. If we cut YΓ along the plumbing torus corresponding to the leftmost

edge of this sub-graph, we split YΓ into two pieces:

• A piece Y∗
Γ corresponding to the complement of the Klein bottle piece (i.e.

the rest of the graph)

• A piece NK which is diffeomorphic to an orientable tubular neighborhood

of a Klein bottle K ⊂ NK ⊂ YΓ.

To see that NK indeed has this topology, we observe from the corresponding

portion of the plumbing graph that NK is a Seifert-fibered space over a disk with

two singular fibers with rational surgery coefficients ±1
2 . This gives a Seifert-

fibered presentation of the twisted I-bundle over the Klein bottle (which itself is

the twisted S1-bundle over S1). (cf. [Hat], Chapter 2.1).

The boundary ∂NK is diffeomorphic to a torus. We say that K is virtually com-

pressible if ∂NK is compressible, otherwise we say that K is virtually incompressible

or virtually essential. For prime 3-manifolds, admitting an embedded virtually

compressible Klein bottle puts severe restrictions on their topology.
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Proposition 5.5.1. Suppose that Y is a prime 3-manifold which contains an embedded

Klein bottle. If this Klein bottle is virtually compressible, then Y may be given the struc-

ture of a Seifert-fibered space over RP2 with at most one singular fiber.

PROOF. As above, every Klein bottle piece yields an associated 3-manifold NK

diffeomorphic to an orientable tubular neighborhood of an embedded Klein bottle

with ∂NK diffeomorphic to a torus.

Let ∆ ⊂ Y − NK be a compressing disk for ∂NK. The union ∂NK ∪ ∆ is a torus

with a meridional disk attached. It follows that the boundary of a smoothing YK of

the union of Nk and a neighborhood of ∆ is diffeomorphic to a sphere. This allows

us to decompose YΓ as a connected sum with YK ∪ B3 appearing as a (non-trivial)

summand. Since YΓ was assumed to be prime, we know that the complement

Y − YK is diffeomorphic to a 3-ball.

It follows that Y − NK is diffeomorphic to a solid torus and so Y is diffeomor-

phic to a solid torus glued to an orientable tubular neighborhood of a Klein bottle

along some diffeomorphism of their torus boundaries. Since NK has the structure

of an S1-bundle over the Möbius strip, it follows that Y may be given the structure

of a Seifert fibration over RP2 with at most one singular fiber (c.f. [Hat], Theorem

2.3(d)). □

Corollary 5.5.2. If YΓ is a prime plumbing boundary which is not Seifert-fibered, then

every Klein bottle piece in YΓ contains a virtually essential Klein bottle.
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Thus if a plumbing boundary is not Seifert-fibered, it cannot contain a virtu-

ally compressible Klein bottle. While this does not fully deal with the issue of

Klein bottle pieces, it does give rise to a simple test for eliminating the possibility

of some embedded Klein bottles. To fully manage Klein bottle pieces in the con-

tact setting, one would need to understand the contact-topological implications of

the existence of virtually incompressible Klein bottles. We hope to pursue this in

future work. For our present purposes, we will avoid analyzing this issue entirely

by showing that the divisor boundary in our example cannot admit Klein bottles

of any kind, virtually compressible or otherwise. This will be expanded upon in

Chapter 6.
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CHAPTER 6

Main Results and Applications

In this section, we will collect a number of topological implications for divisor

boundaries, compactifications, and neighborhoods that follow from the results

in the previous sections. These results are collected with a goal of focusing on

the nature of the structure of all divisor compactifications of a given Liouville 4-

manifold. We hope that these results will help contribute to the theory of birational

symplectic geometry in dimension 4.

As an application of these results, we will prove Theorem 1.0.1 which says that

the submanifold XKT ⊂ MKT is not affine. We will discuss how our arguments

may be extended to produce other examples and conclude after briefly mention-

ing further directions for studying non-affine symplectic manifolds.

6.1. Structural theorems and topological implications

Let (X, dλ) be a Liouville 4-manifold with finite topology. We will consider

the collection of concave SNC+ divisor compactifications of X. Recall that such a

compactification is a pair (M, D) with (M, ω) a closed symplectic manifold and

D ⊂ M a concave SNC+ divisor such that M − D is symplectic deformation

equivalent to X. Each such compactification has an associated contact divisor
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boundary (YD, ξD) obtained as the contact-type boundary of a concave neighbor-

hood (ND, ω) of D. Recall that we say that a divisor D is obstructed if Γξ
D ̸≈ ΓTop

D

and unobstructed otherwise. Our results allow us to characterize the compacti-

fications of obstructed divisors whose associated divisor boundary YD is a prime

3-manifold. If this is the case, then we say that D is prime.

Theorem 1.0.3. Let (M, D) be a concave SNC+ divisor compactification of X. Then

if D is obstructed and prime, we have one or more of the following:

(i) M is a blow-up of a rational or ruled symplectic manifold,

(ii) the contact 3-manifold (∂∞X, ξ) is Seifert-fibered over RP2 via a fibration with

at most one singular fiber, or

(iii) the contact 3-manifold (∂∞X, ξ) contains an embedded incompressible Klein bot-

tle.

This characterization follows directly from a characterization of concave neigh-

borhoods of obstructed prime divisors.

Theorem 1.0.4. Let (ND, ω) be a concave neighborhood of D ⊂ M. If the divisor D

is obstructed and prime, then one or more of the following are true:

(i) up to blow-ups (ND, ω) is symplectomorphic to a concave divisor neighborhood

(ND̃, ω̃) whose associated divisor contains a 0-curve S such that S · S = 0,

(ii) the contact boundary (∂ND, ξD) is Seifert-fibered over the RP2 via a fibration

with at most one singular fiber, or
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(iii) the contact boundary (∂ND, ξD) contains an embedded incompressible Klein bot-

tle.

PROOF. Since D is obstructed, Γξ
D ̸= ΓTop

D . For this to occur, we must have one

or both of the following:

• The contact reduction procedure for ΓD produces chains with leading 0-

curves,

• The contact reduction Γξ
D contains Klein bottle pieces.

By following the contact reduction procedure for ΓD, we may perform a sequence

of symplectic blow-ups on (ND, ω) to obtain a concave divisor neighborhood

(ND̃, D̃) associated to a concave divisor D̃ whose associated graph ΓD̃ is isomor-

phic to the contact reduction Γξ
D.

If the first case occurs, then we may conclude that ND̃ contains a symplectic

sphere with self intersection number 0 and so we may conclude (i). If the sec-

ond case occurs, since D is prime, conclusions (ii) and (iii) follow from Proposi-

tion 5.5.1 and Corollary 5.5.2. □

PROOF OF 1.0.3. This result follows after applying a theorem of McDuff for

ruled symplectic manifolds [McD90, Corollary 1.5(ii)]. In particular, Theorem 1.0.3(i)

follows from the fact that a compact symplectic manifold with a symplectic sphere

of self-intersection number 0 is the blow-up of a ruled surface (topologically an S2

bundle over a closed surface). □
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Remark 6.1.1. If one removes the word ”prime” from each of the above theo-

rems, then conclusions (ii) and (iii) become less refined and we may only conclude

that ∂ND (or equivalently, the ideal contact boundary ∂∞X) contains an embedded

Klein bottle.

In the unobstructed case, the diffeomorphism type of the contact boundary is

sufficient to characterize all concave divisor neighborhoods via direct application

of [Neu81].

Theorem 1.0.7. Let ND and ND̃ denote concave divisor neighborhoods associ-

ated to a pair of unobstructed divisors D and D̃. Then if their divisor boundaries

∂ND and ∂ND̃ are diffeomorphic, the manifolds ND and ND̃ are diffeomorphic up

to blow-ups. □

The combined results about obstructed prime divisors and unobstructed divi-

sors give a complete topological classification of neighborhoods of concave SNC+

divisors.

With additional consideration, we may apply this to produce our most general

result for divisor compactifications. As discussed, the divisor compactification

(M, D) admits a decomposition of the form

M = X ∪Φ ND



74

where (X, dλ) is a Liouville domain, (ND, ω) is a concave neighborhood of D and

Φ : (∂X, ξ) → (∂ND, ξ) is a contactomorphism defining the gluing. By consider-

ing divisor boundaries and ideal contact boundaries, we may consider this to be

a contactomorphism Φ : (∂∞X, ξ) → (YD, ξD). Thus we may consider Φ to be an

element of Cont(∂∞X, ξ), the contactomorphism group of the ideal contact bound-

ary. The isotopy class [Φ] ∈ π0(Diff(∂∞X) determines the diffeomorphism type

of M. This plus Theorem 1.0.7 is enough to conclude:

Theorem 1.0.8. Let D be a concave compactifying SNC+ divisor for a 4-dimensional

Liouville domain (X4, ω) and let (M4, ω) be a compactification of X by an SNC+ divisor

D with associated mapping class [Ψ] ∈ π0(Cont(∂X)) defining the capping. Then M

either satisfies at least one of:

(i) (M, ω) is a blow-up of a ruled symplectic manifold,

(ii) ∂X is Seifert-fibered over the RP2 via a fibration with at most one singular fiber,

(iii) ∂X contains a virtually essential Klein bottle

or any other SNC+ divisor compactification (M̃, ω̃) with the same mapping class [Ψ] can

be obtained from (M, ω) via blow-ups and blow-downs.

This result could be strengthened if one could understand to what extent the

contact mapping class [Ψ] may vary. For example, if every diffeomorphism Ψ : ∂ND →

∂ND extends to a diffeomorphism Ψ̃ : ND → ND, then the diffeomorphism type



75

of any divisor compactification of X is completely determined by the diffeomor-

phism type of X and the topology of D, independent of the choice of contactomor-

phism defining the gluing. We will use this to finish a proof of Theorem 1.0.1 in

the next section.

6.2. A non-affine Liouville manifold

Let MKT denote the Kodaira-Thurston manifold (see [Thu76]) defined as MKT :=

Mϕ × S1 where Mϕ is the mapping torus of a right Dehn twist ϕ : T2 → T2. We

give Mϕ local coordinates (θ1, θ2, θ3) and so MKT may be given local coordinates

(θ1, θ2, θ3, θ4) and we define a symplectic form

ω := dθ1 ∧ dθ2 + dθ3 ∧ dθ4.

We note that (MKT, ω) contains a natural SNC+ divisor. Let σ : S1 → Mϕ be a

section of the mapping torus and let π : Mϕ → S1 be the natural projection map.

We define two tori

DL := π−1(pt)× {pt}

DR := σ(S1)× S1

and let D := DL ∪ DR. Evidently, DL and DR are ω-orthogonal symplectic divisors

and so D is an SNC+ divisor.

The plumbing graph associated to the divisor D is

(1, 0) (1, 0)

.
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and so the intersection form is given by

QD =

0 1

1 0


which admits many GS-positive solutions (regardless of the symplectic area cho-

sen for DL and DR). It follows that ND is concave and so it has contact-type bound-

ary.

We let X := MKT − D. Since X is a symplectic punctured torus bundle over

a symplectic punctured torus, X is a Liouville manifold [BHM15, Theorem 1.2].

The ideal contact boundary ∂∞X is contactomorphic to ∂ND.

Theorem 1.0.1. The Liouville manifold X is not symplectomorphic to any affine va-

riety.

Whose proof will rely on the main application of our result.

Proposition 6.2.1. Any concave SNC+ compactifying divisor D̃ for XKT is unobstructed

and prime.

Recall that a divisor D̃ is unobstructed if Γξ

D̃
≈ ΓTop

D̃
and “prime” simply means

that each divisor boundary is a prime 3-manifold. The fact that all compactifying

divisors for X are unobstructed allows us to apply Theorem 1.0.7. From there, we

verify:

Proposition 6.2.2. If D̃ is a compactifying divisor for XKT, then Every diffeomorphism

Ψ : ∂ND̃ → ∂ND̃ extends to a diffeomorphism Ψ̃ : ND̃ → ND̃.
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By our previous discussion, may conclude:

Theorem 6.2.3. Let (M̃, ω̃) be a concave divisor compactification of XKT. Then, up

to blow-ups, M is diffeomorphic to MKT.

From these results, we may prove our main theorem:

PROOF OF THEOREM 1.0.1. Suppose, on the contrary, that X is affine. Then

it follows that it admits an algebraic SNC+ compactification (M̃, D̃). By Propo-

sition 6.2.1 we see that the divisors D and D̃ are both unobstructed. We may

thus apply Theorem 1.0.7 and see that we may perform a sequence of blow-ups

on M̃ until our divisor D̃ becomes diffeomorphic to D. This process results in a

4-manifold M̂. It then follows from Proposition 6.2.2 that M̂ is diffeomorphic to

MKT. This cannot possibly occur since b1(MKT) = 3 and blowing up does not

alter the first Betti number. □

We will need a few different lemmas in order to establish Theorem 6.2.3:

(i) The divisor boundary YD is a prime 3-manifold

(ii) YD does not contain any embedded Klein bottles

(iii) X does not admit a compactification (M, D) such that D contains a sphere

with self intersection number 0.

Together, items (i) and (ii) tell us that no divisor with divisor boundary diffeo-

morphic to YD can contain Klein bottle pieces. Item (iii) allow us to avoid issues

involving 0-curves as they cannot be a component in any divisor compactifica-

tion of X. In particular, this implies that no 0-curves appear in the contact chain
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reduction of any concave divisor graph with divisor boundary diffeomorphic to

YD. From all of this, it will follow that the contact chain reduction of any such

divisor graph must be isomorphic to its topological reduction which is the key to

concluding our result. We will prove the lemmas listed above in sequence.

Lemma 6.2.4. The manifold YD is prime.

PROOF. Suppose not and suppose we may compose YD as a non-trivial con-

nected sum. Let S ⊂ YD denote the embedded S2 defining the connected sum

decomposition. Recall that YD is the result of a gluing of two S1-bundles over

punctured tori. We will let YL and YR denote these bundles. Let T ⊂ YD be the

plumbing torus, i.e. the image of the boundary tori of YL and YR under this gluing.

We wish to understand how S intersects T. After perturbing via an isotopy, we

may assume that S and T intersect transversely. By compactness, we know that

S and T intersect along a collection of closed curves. Removing T splits S into a

collection of surfaces each having some number of boundary components, each of

which is a curve in the collection. Since S is a sphere, one of these pieces must be

a disk.

The plumbing torus T is an incompressible surface and so the boundary of this

disk must also bound an embedded disk in T. This implies that each of the curves

in our collection are contractible in T. Since YD is prime, these two disks bound a

3-ball and so we may use this 3-ball to push the disk across T and isotope it until

it lies on only one side of the decomposition. We may repeat this argument for

the remaining collection and eliminate every intersection, pushing everything to
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the same side of T. It follows that we may assume that S lies on one side of the

plumbing torus or the other. This would allow us to decompose one of the sides

as a non-trivial connected sum. Since both π2(YL) ≈ π2(YR) ≈ 0, we know this is

impossible. □

We will now prove that YD is free of Klein bottles.

Lemma 6.2.5. The manifold YD contains no embedded Klein bottles.

PROOF. We start by showing that YD cannot contain compressible Klein bot-

tles. By Lemma 6.2.4 and Proposition 5.5.1, if YD did contain a virtually compress-

ible Klein bottle, then it may be given the structure of a Seifert fibration with at

most one singular fiber. If this were the case, its fundamental group would admit

the following presentation:

π1(YD) = ⟨µ, λ : µλµ−1 = λ−1, µ2a = λ−b⟩

for some a, b ∈ Z.

We understand the topology of YD as the result of plumbing surgery on a pair

of trivial S1-bundles over T2. From this description, we may give a presentation

of the fundamental group (c.f. [Orl72, Chapter 5.3]):

π1(YD) = ⟨u, v, x, y, FL, FR : FL = [x, y], FR = [u, v]⟩.
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By abelianizing, we see that

H1(YD) = π1(YD)Ab = Z4

so the abelianization of the second presentation is obviously not equal to the

abelianization of the first. Thus we arrive at a contradiction.

We then turn to the case of embedded incompressible Klein bottles. Topologi-

cally, YD is the boundary of a plumbing of two trivial D2-bundles over T2. We let

T ⊂ YD be a fixed representative of the sole plumbing torus. Suppose that K ⊂ YD

is an embedded virtually incompressible Klein bottle.

Cutting YD along T splits the manifold into two pieces YL and YR. Both of these

manifolds are diffeomorphic to S1-bundles over a torus minus an open disk. This

cut splits K into a collection {Σi}i∈I of surfaces with boundary. A fixed boundary

component of any one of these surfaces is some closed curve in T. Since K is

an essential surface, each Σi is an incompressible and boundary incompressible

surface in either YL or YR. These surfaces must be either horizontal or vertical

with respect to the Seifert fibrations (c.f. [Hat], Proposition 1.12). Recall a surface

Σ in a Seifert-fibered space Y with Seifert-fibration π : Y → S is vertical if Σ is

a union of fibers of π and horizontal if it is transverse to the fibers of π. If Σ is

horizontal, the restriction of π gives Σ the structure of a branched cover over S.

Since the plumbing torus T is incompressible, we can assume that none of the

Σi are disks. Thus since K is broken into the pieces Σi by T, we know that each Σi

must be either:
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• a mobius band,

• a punctured Klein bottle,

• an annulus, or

• a Klein bottle.

If Σi is a horizontal surface, then it must be a branched cover over a punctured

T2 and hence it must be oriented and have negative Euler characteristic (by the

Riemann-Hurwitz formula, [Jos97, Theorem 2.5.2]). Thus none of the Σi are hori-

zontal.

A vertical surface must be either an annulus or a torus so K is a union of verti-

cal annuli in YL and YR. In order for these pieces to glue to form a Klein bottle, we

must always have a pair of pieces ΣL ⊂ YL and ΣR ⊂ YR which are glued together

in the union. Since the gluing between YL and YR sends the fiber of one side to a

section on the other side, we cannot have that both of these surfaces are vertical,

a contradiction. □

In order to establish (iii) we need the following.

Lemma 6.2.6. The cohomology group H2(X) contains a class with positive self intersec-

tion.

PROOF. We consider our chosen section σ : S1 → Mϕ of the mapping torus

and we let π : Mϕ → S1 be the natural projection. As above, we have

DL := π−1(pt)× {pt}
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and

DR := σ(S1)× S1.

We may trivialize the T2-bundle π : MKT → T2 near the fiber DL in order to obtain

generators for nearby T2-fibers. Given q ∈ S1 near our chosen point p := π(DL),

we let Dq denote the fiber lying over it. We let µq, λq ∈ H1(Dq) denote the gener-

ators obtained from the trivialization. We choose our trivialization such that µq is

parallel to the curve along which we perform a Dehn twist in each mapping torus

Mϕ × {pt} ⊂ MKT.

We let AL ∈ H2(MKT) denote the homology class represented by a product of

λq with the circle {pt} × S1 ⊂ MKT. We let AR ∈ H2(MKT) denote the homology

class represented by a product of a parallel copy of σ(S1)× {pt} (i.e. one disjoint

from DR) with µ, the image of µq × I in Mϕ ⊂ MKT. We let A = AL + AR.

Evidently, we have A · A > 0 which completes the proof. □

With this, we may prove:

Lemma 6.2.7. X cannot admit a divisor compactification (M, D) such that D contains a

sphere of self intersection number zero.

PROOF. Assume by way of contradiction that X admits such a compactifica-

tion (M, D). Let S ⊂ D denote a sphere with S · S = 0. By [McD90, Corol-

lary 1.3(ii)], the manifold M is diffeomorphic to an S2-bundle over a closed surface

Σ blown up some number of times and S is homologous to a fiber of this bundle.

It is straightforward to compute the intersection form of this manifold:
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Let M̃ be the minimal symplectic manifold obtained by blowing down all of

the exceptional curves of M (so that M̃ is a genuine S2-bundle over a surface).

The second homology group H2(M̃; Z) is generated by a generic fiber F and a

generic section Σ̃ ⊂ M̃. If M̃ is trivial, then the intersection form is given in the

{[F], [Σ̃]}-basis by 0 1

1 0


and if M̃ is non-trivial, the intersection form is given by0 1

1 1

 .

In order to obtain M from M̃, we must perform blow-ups at a collection of disjoint

points {p1, . . . , pm} ⊂ M̃. We may assume these points are disjoint from F and Σ̃.

After performing these blow-ups, the intersection form of M is given by either0 1

1 0

⊕−1[m]

or 0 1

1 1

⊕−1[m]

where −1[m] denotes an m × m matrix with −1’s along the diagonal and zeros off

the diagonal.
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We consider Z = M̃ − F. Since F is parallel to the 0-framed sphere in D, we

must have X ⊂ Z. We note that the intersection product

− · − : H2(Z)⊗ H2(Z) → Z

is negative semi-definite. To see this, we simply observe that Z is diffeomorphic

(via our generic section Σ̃) to a blow-up of Σ̃∗ × S2 where Σ̃∗ = Σ̃ − {pt}. Ev-

ery class β ∈ H2(Z) has β · β ≤ 0 so the induced intersection product H2(Z) ⊗

H2(Z) → Z is negative semi-definite. The pushforward of the class from Lemma 6.2.6

along the inclusion is a class with positive self intersection and so we have a con-

tradiction.

□

In order to apply the full strength of our main theorem as in the conclusion of

the previous section, we prove:

Proposition 6.2.2. Every diffeomorphism of YD extends to the neighborhood ND i.e.

for any diffeomorphism ψ : YD → YD, there exists a diffeomorphism of Ψ : ND → ND

such that Ψ|YD = ψ.

PROOF. We note that YD is not a Seifert fibered space. This follows, for exam-

ple, from a corollary of Neumann’s theorem ([Neu81], Corollary 5.7) which states

that the normal form of a plumbing graph associated to a Seifert fibered space

must be star shaped (i.e. a single genus g component connected to a number of

chains of spheres). ΓD is in normal form but it is certainly not star shaped.
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If T ⊂ YD is a plumbing torus representative, then YD − T is a pair of S1-

bundles over surfaces with boundary as above. It follows that each piece in this

decomposition is Seifert-fibered.

It follows that the singleton set {T} yields a JSJ-decomposition of YD (c.f. [Hat],

Chapter 2). By the uniqueness theorem for JSJ-decompositions, we may assume

that ψ is isotopic to a diffeomorphism which fixes a regular neighborhood of T.

Thus ψ is isotopic to a diffeomorphism of the two pieces YL and YR which is the

identity near the boundary. This diffeomorphism respects the Seifert fibrations of

the two pieces and so is induced by a pair of diffeomorphisms fL, fR : T2
∗ → T2

∗ of

the T2
∗ , the torus minus a disk. We may use these diffeomorphisms to define our

diffeomorphism Ψ : ND → ND which completes the proof. □

Once we know that every diffeomorphism extends, we may reach our strongest

possible conclusion about the collection of all compactifications.

Theorem 6.2.8. Let (M, ω̃) be a concave divisor compactification of XKT. Then, up

to blow-ups, M is diffeomorphic to MKT.

PROOF. Given such a compactification (M, ω̃) by a divisor D̃, we let ΓD̃ de-

note its associated divisor graph. Since MKT and M are both divisor compactifi-

cations of the same manifold XKT, it follows that YD and YD̃ are diffeomorphic.

Since XKT is a Liouville manifold, it follows that (YD, ξD) and (YD̃, ξD̃) are also

contactomorphic to ∂∞XKT, and thus to each other.
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Since YD is unobstructed, the contact reductions Γξ
D and Γξ

D̃
are both isomor-

phic to their respective topological reductions. By Neumann’s theorem (and the

modified chain reduction lemma), it follows that we may relate the divisor graph

of ΓD to ΓD̃ via a sequence of blow-ups and blow-downs. From this, we may per-

form corresponding blow-ups on (M, ω̃) in order to transform the divisor D̃ into

D (this follows because ΓD is already in topological normal form). This presents a

blow-up Bℓ(M) as a compactification of XKT by the same divisor D and so M and

Bℓ(M) differ only by the isotopy class of diffeomorphism of YD defining these

compactifications. By ??, there is only one such isotopy class. It follows that

Bℓ(M) and MKT are diffeomorphic □

Thus we may conclude:

Theorem 1.0.1. The manifold X = MKT − D is not symplectomorphic to any affine

variety.

A similar argument should work for any Liouville manifold whose ideal con-

tact boundary is prime and whose divisors are all unobstructed, so long as it ad-

mits a compactification M with b1(M) odd. In light of [McL18] and [Sei08], this

is the first example of a non-affine symplectic manifold whose obstruction from

being affine cannot be detected by the growth rate of symplectic homology. The

existence of this example tells us that there should be a deeper obstruction to being

affine that assumes the same basic topological setup as above and is not captured



87

via growth rate techniques. The existence and nature of such an obstruction is still

currently unknown.
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